Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 10 results ...

Agbesi, K, Fugar, F D and Adjei-Kumi, T (2018) Modelling the adoption of sustainable procurement in construction organisations. Built Environment Project and Asset Management, 8(05), 461–76.

Bandara, C, Dissanayake, D, Karunasena, G and Madhusanka, N (2018) Mitigation of challenges in sustaining green certification in the Sri Lankan hotel sector. Built Environment Project and Asset Management, 8(05), 515–27.

Crippa, J, Boeing, L C, Caparelli, A P A, da Costa, M d R d M M, Scheer, S, Araujo, A M F and Bem, D (2018) A BIM–LCA integration technique to embodied carbon estimation applied on wall systems in Brazil. Built Environment Project and Asset Management, 8(05), 491–503.

Dolla, T and Laishram, B S (2018) Procurement of low carbon municipal solid waste infrastructure in India through public-private partnerships. Built Environment Project and Asset Management, 8(05), 449–60.

Pérez, C T and Costa, D (2018) Developing a taxonomy of transportation waste in construction production processes. Built Environment Project and Asset Management, 8(05), 434–48.

Ranawaka, I and Mallawaarachchi, H (2018) A risk-responsive framework for green retrofit projects in Sri Lanka. Built Environment Project and Asset Management, 8(05), 477–90.

Samaraweera, A, Senaratne, S and Sandanayake, Y (2018) Nature of construction project cultures in the public sector: case studies in Sri Lanka. Built Environment Project and Asset Management, 8(05), 557–68.

Victoria, M F and Perera, S (2018) Managing embodied carbon in buildings: a Pareto approach. Built Environment Project and Asset Management, 8(05), 504–14.

  • Type: Journal Article
  • Keywords: Embodied carbon; Office buildings; Building elements; Carbon hotspot; Carbon hotspot probability; Pareto principle;
  • ISBN/ISSN: 2044-124X
  • URL: https://doi.org/10.1108/BEPAM-10-2017-0095
  • Abstract:
    The purpose of this paper is to identify the carbon intensive building elements or “carbon hotspots” of office buildings in order to maximise the carbon reduction potential during design stages. Design/methodology/approach Embodied carbon (EC) estimates of 28 office buildings in the UK were obtained and carbon hotspots of the sample (in accordance with the new rules of measurement (NRM) element classification) were identified using the 80:20 Pareto principle. Findings Frame, substructure, external walls, services and upper floors were identified as carbon hotspots of the selected sample. However, findings do not support the 80:20 ratio in this case but propose a ratio of 80:36. Stairs, internal walls and partitions, internal doors, wall finishes, ceiling finishes and fittings and furnishings were identified as carbon insignificant elements that have a lower EC reduction potential compared to the rest. Research limitations/implications The findings are applicable to office buildings in the UK but the methodology is adaptable to different types of buildings in other countries. Originality/value Findings unveil carbon intensive and carbon insignificant building elements of typical office buildings in the UK. This informs designers of the elements that could yield the highest potential EC savings via effective design choices. In addition, a logical design timeline is proposed for building elements based on their element hotspot category and design sequence to assist design decision making.

Weerasinghe, A S and Ramachandra, T (2018) Economic sustainability of green buildings: a comparative analysis of green vs non-green. Built Environment Project and Asset Management, 8(05), 528–43.

Yumarni, T and Amaratunga, D (2018) Gender mainstreaming as a strategy to achieve sustainable post-disaster reconstruction. Built Environment Project and Asset Management, 8(05), 544–56.